An iterative vertex enumeration method for objective space based vector optimization algorithms

نویسندگان

چکیده

An application area of vertex enumeration problem (VEP) is the usage within objective space based linear/convex vector optimization algorithms whose aim to generate (an approximation of) Pareto frontier. In such algorithms, VEP, which defined in space, solved each iteration and it has a special structure. Namely, recession cone polyhedron be generated ordering cone. We consider give detailed description procedure, iterates by calling modified “double (DD) method” that works for unbounded polyhedrons. employ this procedure as function an existing algorithm (Algorithm 1); test performance randomly linear multiobjective problems. compare efficiency with another DD method well current subroutine Algorithm 1. observe excels others especially dimension (the number objectives corresponding problem) increases.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

Iterative Rounding for Multi-Objective Optimization Problems

In this paper we show that iterative rounding is a powerful and flexible tool in the design of approximation algorithms for multiobjective optimization problems. We illustrate that by considering the multi-objective versions of three basic optimization problems: spanning tree, matroid basis and matching in bipartite graphs. Here, besides the standard weight function, we are given k length funct...

متن کامل

Bayesian Optimization Algorithms for Multi-objective Optimization

In recent years, several researchers have concentrated on using probabilistic models in evolutionary algorithms. These Estimation Distribution Algorithms (EDA) incorporate methods for automated learning of correlations between variables of the encoded solutions. The process of sampling new individuals from a probabilistic model respects these mutual dependencies such that disruption of importan...

متن کامل

An Interactive Fuzzy Satisfying Method Based on Particle Swarm Optimization for Multi-Objective Function in Reactive Power Market

Reactive power plays an important role in supporting real power transmission, maintaining system voltages within proper limits and overall system reliability. In this paper, the production cost of reactive power, cost of the system transmission loss, investment cost of capacitor banks and absolute value of total voltage deviation (TVD) are included into the objective function of the power flow ...

متن کامل

Query Optimization Using Genetic Algorithms in the Vector Space Model

In information retrieval research; Genetic Algorithms (GA) can be used to find global solutions in many difficult problems. This study used different similarity measures (Dice, Inner Product) in the VSM, for each similarity measure we compared ten different GA approaches based on different fitness functions, different mutations and different crossover strategies to find the best strategy and fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rairo-operations Research

سال: 2021

ISSN: ['1290-3868', '0399-0559']

DOI: https://doi.org/10.1051/ro/2020139